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Rational Dependence and the Renormalization of Structure Factors
for Phase Determination

By H. HaupTMAN AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Received 11 April 1959)

The effect of rationally dependent atoms on phase determining formulas is described. This leads to
a procedure for reinterpreting and modifying these formulas which is based upon the examination of
subsets of the experimental data and a subsequent renormalization of structure factors. Although
the nature of the renormalization is structure dependent, no previous structural knowledge is re-
quired for earrying out the procedure or computing phases. An example illustrating the features of
rational dependence and renormalization is included.

1. Introduction

Since the appearance of our Monograph I (1953), we
have endeavored to develop more general and effec-
tive phase determining procedures. This has cul-
minated in a current series of papers under the title,
‘A Unified Program for Phase Determination’ (1959).
In these papers exact formulas, valid for all the space
groups, are presented which are applicable to struc-
tures containing dissimilar atoms as well as those
consisting only of similar atoms. The single require-
ment for exact validity of the formulas is one which
concerns a special kind of rational independence
modulo 1 of atomic coordinates. Rational dependence
ocecurs when the coordinates of atoms are rational or
when they are rationally related to each other in a
manner to be defined in § 2.

An integral part of the phase determining proce-
dures previously developed was the introduction of the
normalized structure factor Ey, with the property that
{|Ey|2)n=1, where the average is taken over the set i
consisting of all vectors h in reciprocal space. The
characteristic effect of the existence of rational depen-
dence is that {|Ey|2), differs significantly from unity
when the average is taken over certain subsets of H.
Our first attempt to cope with the problem of rational
dependence in phase determining relationships ap-
peared in Chapter 5 of Monograph I (1953). In this
chapter the nature of the subsets of H and the averages
of the corresponding |Ey|2 were employed to infer the
structural basis of the rational dependence. From this
inference a type of renormalization of structure factors
(equation (5:07), Monograph I) was carried out and
employed in the phase determining relations (e.g.
equation (5-13), Monograph I).

In this paper the renormalization is carried out
without first inferring the structural origin of the
rational dependence. This leads to a general procedure
for renormalization, independent of the nature of the
rational dependence, which has the advantage of not
requiring a knowledge of the rationally dependent sets
of atoms. It is of interest that the phase determining

formulas of Monograph I (1953) and of the current
series (1959) maintain their validity provided that the
renormalization has first been carried out.

In this paper the nature and effect of rational
dependence will be discussed by means of illustrative
examples and the general treatment of experimental
data will be described. It is important to consider this
treatment of the data when the averages {|E,|2)n
taken over various subsets of H differ significantly
from unity. Future experience will tell how frequently
this occurs in structure determination. In view of the
experimental restrictions on collecting scattering data
and the tendency of the averages over low order
reflections to exaggerate the effects of approximate
rational dependence, the need for renormalization may
be quite frequent.

2. Rational dependence modulo 1

A set of numbers r;, j=1, ..., v is said to be rationally
dependent modulo 1 if there exist » integers m;, not
all zero, such that

2 miri=u , (2-1)
j=1

where % is an integer and r; will be identified later
with x;, y;, or z;. The only type of rational dependence
which requires special treatment consists of the
particular cases of (2-1) in which either »=1 or »=2
and m;= —mg. Atoms are said to be rationally de-
pendent if their z or y or z coordinates satisfy (2-1)
in the restricted sense just described. The simplest
rationally dependent set, modulo 1, is given by a
single atom whose coordinates are all rational, in-
cluding therefore not only the case of an atom in a
fixed special position, e.g. %, 4, 0, but also the case
of an atom having more general rational coordinates,
e.g. 4,3 % An example of a rationally dependent
pair is given by two atoms in general positions, having
as the difference of any of their corresponding coor-
dinates a rational number, e.g. r1=(z, ¥, 2) and rz=
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(x+14, ¥, 2), since we may take my= —mz=2 in (2-1)
with =2 and rp=2+1%; or e.g. ri=(z,y,2) and
ro=(z+},y—32,2+%). In the first of these examples
{|Eg00|2) >1, while {|Eu00/2)<1 (g means even and w
means odd). In the case that ri=(z, y,z) and r,=
(@, ¥, 2"), {|Enool?)>1.

3. Analysis

The effect of rational dependence is illustrated here
for 21 (Monograph I, 1953) of space group P2/m by
means of examples of increasing complexity, culminat-
ing in the most general case. At the same time the
process of renormalization will be seen to be contained
in the results of these calculations.

The final section 3-6 will be devoted to summarizing
the nature of various phase determining formulas for
all the space groups.

3-1. No rational dependence

For space group P2/m the quasi-normalized struc-
ture factor &n(h=(kkl)) (Karle & Hauptman, 1959),
is defined by

4 s
En = I 3 Zj cos 2gt(hay+1zy) cos 2mky; ,  (3-1-1)
2 j=1
where Nja
on=4 X 77}; (3-1-2)
j=1

N is the number of atoms per cell in non-rational
positions and Z; is the atomic number of the jth atom.
From (3-1-1) it follows that

4 Y
(o= 7 2 ZF(1 + cos 47 (ha+1z7)) (31-3)
27=1
oy 4 VA
=1+ — 5 3 7% cos dm(hay+1zj) . (3-1-4)
o2 0'4/ j=1
Therefore
' o
Esnon = ;%(cf,z,kl—lh (3-1:5)
4

where &0 is the quasi-normalized structure factor
for the squared structure, i.e. the structure isomor-
phous to the given one in which Z; is replaced by Z2.
It should be noted that (3-1-4) implies (&% p=1.

3:2. An additional atom at 0, 0, 0
The quasi-normalized structure factor is now
1 N4
En = iR <Z+4 2 Zj cos 27 (hx; + lz5) cos 27tkyj> s
2 j=1
(3-2-1)
(3-2-2)

where N
on=2"+oy, of=437".
i=1

From (3-2-1) it follows that
1 Nja

(EE = . {Z2+4 2 ZF(1+cos 4n(hx7+lzj))} , (3-2-3)
2 j=1

011/2 4 N

=l+—-———0 3 Z% cos dm(has+1zg) . (3:2+4)
2 04 j=1
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Therefore
o2

(g;khozz = —z13 (‘g’%kl- 1>k »

oY

(3-2-5)

where &3, is the quasi-normalized structure factor
for the squared structure with the atom at the origin
deleted. We note that (3-2-4) implies (&2)p=1.

3:3. Additional atoms at 0,0,0 and %, 0,0
The quasi-normalized structure factor is now

1 N4
&0 = le{z+(—1)"Z’+42,‘Z,
O3 j=1
x ¢os 27t (ha; + lz;) cos anyj} (3:3-1)
where

N4
Op=Z"+Z M+ ok, oF=43Z". (332
j=1

From (3-3-1) it follows that

1 5
@=L+ -vzpea S

=1

» (1 +cos 4n(hx;+lz,—))} , (333)
= 1+EZZ’(—1)"
o2
O'ffllz 4 N4 5
—02—-52‘1?7;2; Z; cos 4 (hay+1z;) . (3-3-4)
Therefore

[ep]
* 2
Ehou =

2,
W< el = <1 +G—2ZZ (—1)h>>k » (3:3:5)

where &3,y is the quasi-normalized structure factor
for the squared structure with the atoms at 0,0, 0
and §, 0, 0 deleted. Now we find that (3-3:4) implies
that

2
<g§>gkz=l+;2ZZ', (3:3-6)
(E = 1— 03 77, (3-37)
2
while
(E2=1. (3:3:8)

Equations (3-3-6) and (3-3-7) illustrate the characteris-
tic effect of rationally dependent atoms, namely the
deviation from unity of averages of |&},|2 over certain
of the subsets of the indices. In view of (3-3-6) and
(3-3-7), (3-3-5) may be written

Shou= 27 (Elu— D, (3:3-9)
where !
E2=(EDgr1, if hiseven, (3-310)
and
E2={EDur, ithisodd.  (3:3:11)

Equation (3-3-9) may be rewritten
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‘9@2};021 (3‘3'12)

02?2 ghkl 1\
T \&

and is of the same form as (3:1-5) and (3-2-5) with
&nry replaced by the ‘renormalized structure factor’
Enrt/(E2)Y%. The renormalized structure factor is ob-
tained from &nx; by dividing &rr by the root mean
square of all the & over the subset to which &nu
belongs, i.e., in this case, over the gkl if 4 is even and
over the wkl if A is odd. In equations (3-1-5) and

(3-2+5), & is equal to unity when the average is taken
over any subset defined in terms of the indices alone.
In this sense the &ne in (3-1-5) and (3:2-5) may be
regarded as special cases of renormalization. Although
(3-3-12) illustrates the origin of the term ‘renormaliza-
tion’, it will be convenient in what follows to use the
equivalent form (3-3-9).

3-4. Additional atoms at 0,0,0; 3,0,0 and 0,0, 3
The quasi-normalized structure factor is now

Ep = 1/2{Z+(——1)”Z’ (—1)2"

N4

+4 3 Z; cos 2m(hx;+Iz;) cos 2nky,} , (3-41)
j=1
where

=2"+7Z"+7Z " +co¥, of
From (3-4-1) it follows that

N4
=4377. (342)
j=1

9 1 1 rr
=iz +(- 102+ (-2 P
N[a

+4 3 Z}[1+ cos 4n(h; +lz,)]} (3-4-3)

j=1

=1+ ;Q;ZZ'(" 1)+ EZZ”(— 1)+ 2Z'Z"(— 1)+t
0*1"’ 4
— 0'*1/2 ZZ2 cos 4 (hx;+1lz;) . (3-4-4)
Therefore,
| o = éﬁ‘/—z (E%— @72>,c , (345)

where &%,45 is the quasi-normalized structure factor
for the squared structure with atoms at 0,0, 0; 4, 0,0

and 0,0, } deleted. The &2 is the appropriate one of

2
(E%grg = 1+; (ZZ'+ZZ"+Z'Z") , (3-4-6)
(6 gru = 1+§ (ZZ'-ZZ"-Z'Z") , (3-47)
P
(Euiy = 142 (=22 + 22" ~Z'T"), (349)

g2

2
(EDuww= 14+ (=22 22"+ 2'Z"), (349)
2

ie. in (34-5) E2=( &g if b and I are both even,
8% ={E%ygru if h is even and I is odd, etc. We note
again that although the averages in equations (3-4-6)—
(8-4-9) differ from unity, we still have (i =1
where h ranges over all vectors in reciprocal space.

3-5. General case

The quasi-normalized structure factor, including
additional atoms Zi; in rational positions, is

1 (M
&y = gm{z VATR S 2n(kx11+ky1i+l21j)
2 =1

N4
+4 3 Z; cos 2m(hx;+ lz;) cos 2nky;} , (3-5°1)
=1
where
¥y N4
o,=23 Zi;+oy, on=43 77,
j=1

i=1

(3-5-2)

and the N1 atoms Z; constitute a rationally dependent
set which causes significant deviations from unity in
the averages of &% over certain subsets.
It follows from (3-5-1) that
¥4
gl?‘lkl =Ahkl+4 2 ij COoSs 471(h$7+ lZ]) (1 + cos 47'[]0:1/7) +R
j=1
(3-5-3)
where
1%
A= 0'—2 {[ 2 Zyz cos 2n(hxyy+ kys+ 1211)} + 05 }
(

i=1
3-5:4)
and R is a double summation which satisfies

(RYp=0 (3-5-5)

Let h=(h, k,1) be equal to the fixed vector h,=
(h1, k1, 11). We average both sides of (3-5-3) over all
integers k such that Anx, = Ank,,, obtaining

*1/2

o <4
(= A + ;2 710203 (3:5-6)

where &3;, 02, is the quasi-normalized structure factor
for the squared structure with the N; atoms Z;
deleted.

Consider all values of %, k£ and [ such that

(8-5-7)

We now average both sides of (3-5-3) over this set of
h, k and I, obtaining

<("@121kl>hkl = Ahlklll .

Equation (3-5-6) may be rewritten in the form

Aner=Anyey, -

(3-5-8)

o "
éaghl 02n = 0?1,—2 <(9@7;1k11 - Ah1k111>k s (3-5-9)
4
where it is clear from (3-5-8) that Anx,;, is an average
of &3, over an appropriate set of indices. We replace
k) in the above argument by ke, k3, ... in turn, and

average over ky, ke, k3, ..., obtaining finally
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a2
éaghlozzl= o Fi <é‘)}221k11 - Ah1k11>k s (3:5-10)
4

where the average in (3-5:10) is now taken over all k,
and for each fixed k;,

Anyegt, ={E o » (3-5-11)

where the average in (3:5-11) is over all k, k, and [
such that Auxi=Anx,. Equation (3-5-10) represents
the general case of renormalization for 2 in space
group P2/m.

36. X,, X, basic and integrated formulas

The same methods for obtaining the formulas for
21 in P2/m in sections 3:1-3-5 may be employed to
obtain similar formulas in the other space groups,
including non-centrosymmetric space groups having
centrosymmetric projections. The Sayre (1952) for-
mula X represented in algebraically exact form by

. O
&= s (Exbnidx (3:61)
is unaffected by rational dependence. Here &} is the
quasi-normalized structure factor for the entire
squared structure.

On carrying through the derivation of 23 by alge-
braic means in space group PI, for example, the result
is

a3?

g§*=om<gk(ggh+k)/2—gi)>k ,  (3:6:2)
6

where &p* is the quasi-normalized structure factor
for the cubed structure with the rationally dependent

atoms deleted. As before, &2 is the average value of
&” over the subset to which &5, k2 belongs.

The basic and integrated formulas for phase deter-
mination, derived by means of the probability methods
employing averages over the indices (Hauptman &
Karle, 1958; Karle & Hauptman, 1958; also the series
on a unified program for phase determination, 1959 ff.),
have exact validity if there is no rational dependence.
In the case of rational dependence, we have found
that these formulas require the same type of re-
normalization as that already described in sections
3:1-3-5. For example in the first of the papers con-
cerned with a unified program for phase determination
(Karle & Hauptman, 1959), the types of functions
which appear in the averages over all indices are

An=|EnlP— pp (3-6-3)
and
_|&w'—1 .
th—'lo—g@—Mt7 (3-6-4)
where
tp={| x|k (3-6-5)
and
t_—
= /lgkl_l\ (3-6-6)

“\log €l /x
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In order to include the effect of rational dependence
in these formulas to a first approximation, it is merely
necessary to reinterpret the averages in (3-6-5) and
(3:6-6) to mean that they are taken only over that
subset k to which the corresponding |Ey| of (3:6-3)
and (3:6-4) belongs. It should be noted that this is
the only change introduced into the phase determining
formulas, e.g. (3-1-1), (3-1-2), (3-2-1) and (3-2-2) of our
paper (1959), since the & in these formulas still refer
to the quasi-normalized structure factors for the entire
squared structure.

4, Procedure

It is assumed that in accordance with well-known
procedures a list of the magnitudes of the normalized
structure factors is available. In searching for subsets
for which |E|? differs significantly from unity it is
convenient to have a listing in decreasing order of |Ej2.
Each subset must be describable by means of one
or more congruences of the following form

ah+bk+cl =n (mod m) , 41)

where a, b, ¢ and the prime factors of m are small

integers (ordinarily <11). Whether a set of means |Ej|
is to be considered a significant one requiring re-
normalization depends upon the magnitudes of the
deviations from unity, the number of contributors,
and the number of means in the set. In forming this
evaluation, it is necessary to know that the standard
deviation of |Ey[? is /2 or 1 depending upon whether
the distribution of |Ey| is centric or acentric. Then the
respective standard deviations of the means are
(2/n)Y2 or (1/n)"/2, where n is the number of contribu-
tors to the corresponding mean. Once significant
subsets have been obtained, the averages, |£|” or

(|€]:'—1)/log |&], over these subsets, rather than over
all reciprocal space, are employed in the phase deter-
mining formulas.

Table 1. Averages over subsets for the mineral spurrite,
space group P2, [a, showing the need for renormalization

(erP-=1

2

Subsets {&?) Tog €] V(2[n)

g0l, h+1l=0(mod3) 3-344 8-955 42 0-22

g0l h+l==0(mod3) 1-365 3-743 85 0-15

ggl,h+1l=0(mod3) 2:462 6-557 81 0-16

g9l htlz=0(mod3) 1216 3373 160 011

wul, h+1 =0 (mod3) 1-531 4-173 97 0-14

wwl, h+l= 0 (mod 3) 0-758 2.222 192 0-10
h == & (mod 2) 0-580 1725 633 006
All data 1-017 2-859 1290 0-04

In this space group the normal value for (&%), is 2 while

that for (&2)pp is 1. The third column contains averages

suitable for use in the integrated formulas. The fourth column
shows the number of elements in each subset

As an example, Table 1 illustrates our experience
with the mineral spurrite. Reference to column 5
indicates that the various averages show significant
deviations from their expected values. The subsets of
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Table 1 were obtained by inspection of the experimen-
tal data previous to the structure determination. The
employment of the averages of Table 1 facilitated
the solution of the problem to be published at a future
date. It is of interest that, in this case, the structural
origin for the renormalization depends upon the
presence of six rationally dependent atoms. Their
position vectors, ri, s, ..., re satisfy the following
relations approximately

Te—I A T4—I3~x Tg—Ts ~ (%, O, %) s (4'2)
ri—r3~ (0,%0), 4-3)

and
ri—rs ~ (0, %’ i’) . (44)

5. Concluding remarks

As may be seen from the foregoing sections the treat-
ment of the problem of rational dependence does not
require a previous knowledge of structure. The re-
normalization procedure is based merely upon in-
spection of the averages of subsets. This process
should be readily amenable to programming on
automatic computing facilities.*

* Since this paper was written, a program for renormaliza-

Acta Cryst. (1959). 12, 850

More general effects of rational dependence, which
are included in (2-1) when »=2 and mi% —ms or
v>2, change only the higher order terms in the phase
determining formulas and therefore do not usually
have a significant effect.

In general the average Ef over all vectors in recip-
rocal space is unity, even for the case of rationally
dependent atoms. However, when atomic coordinates
overlap in projection, EZ >1 in that projection. With
the finite number of data available from experiment
this may cause a deviation from unity of the over-all
average.
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The Crystal Structure of Iron(II) Chloride Tetrahydrate
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The crystal structure of iron(II) chloride tetrahydrate has been determined by means of electron-
density projections down the three crystallographic axes. Atomic coordinates have been refined by
three-dimensional least-squares treatment of the diffraction data of the three equatorial zones.
The crystals are monoclinic, space group P2,/c with a =591, b=17-17, c=8-44 A, f=112°10".
The structure consists of discrete Fe(H,0),Cl, groups, two per unit cell. They are distorted octahedra
and it is suggested that they are held together by O-H - - - Cl hydrogen bonds. Bond distances
within a group are Fe—Cl, 2-38; Fe-0(1), 2-:09; Fe-0(2), 2.59 A.

1. Introduction

The available crystal structural data on hydrated
metallic halides are extremely limited (e.g. see Wells,
1954). There are only about ten detailed structure
determinations reported in the literature and of these,
only three, namely cobalt(II) chloride dihydrate
(Co(H20)2Clz) (Vajnitejn, 1949), copper(II) chloride
dihydrate (Cu(H:0)2Clz) (Harker, 1936 and Petersen

* Present address: Department of Chemistry, Harvard
University, Cambridge 38, Massachusetts, U.S.A.

& Levy, 1957), and copper(Il) fluoride dihydrate
(Cu(H20)oF2) (Geller & Bond, 1958) refer to simple
salts of transition metals. Of general interest in such
crystals are (@) the nature of the metal-halogen bonds,
(b) the stereochemical requirements of the water
molecule, and (c) the nature of the hydrogen bonding.
We propose to undertake a study of the crystal struc-
tures of a series of hydrated iron(II) halides as a con-
tribution to the crystal chemistry of hydrated halides
generally. The tetrahydrates of the chloride and fluor-
ide of iron(II) are both readily available and, as such



