
846 

Acta Cryst. (1959). 12, 846 

Rational  Dependence and the Renormal izat ion of Structure Factors  
for Phase  Determinat ion  
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U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A. 

(Received 11 April 1959) 

The effect of rationally dependent  atoms on phase determining formulas is described. This leads to 
a procedure for reinterpret ing and modifying these formulas which is based upon the examinat ion of 
subsets of the experimental  data  and a subsequent  renormalizat ion of s tructure factors. Al though 
the  nature  of the renormalizat ion is structure dependent ,  no previous structural  knowledge is re- 
quired for carrying out the procedure or comput ing phases. An example il lustrating the features of 
rat ional dependence and renormalizat ion is included. 

1. Introduct ion 

Since the appearance of our Monograph I (1953), we 
have endeavored to develop more general and effec- 
tive phase determining procedures. This has cul- 
minated in a current series of papers under the title, 
'A Unified Program for Phase Determination' (1959). 
In these papers exact formulas, valid for all the space 
groups, are presented which are applicable to struc- 
tures containing dissimilar atoms as well as those 
consisting only of similar atoms. The single require- 
ment for exact validity of the formulas is one which 
concerns a special kind of rational independence 
modulo 1 of atomic coordinates. Rational dependence 
occurs when the coordinates of atoms are rational or 
when they are rationally related to each other in a 
manner to be defined in § 2. 

An integral part of the phase determining proce- 
dures previously developed was the introduction of the 
normalized structure factor Eh with the property that  
(IEhl2>,= 1, where the average is taken over the set H 
consisting of all vectors h in reciprocal space. The 
characteristic effect of the existence of rational depen- 
dence is that  (IEhl~)h differs significantly from unity 
when the average is taken over certain subsets of H. 
Our first at tempt to cope with the problem of rational 
dependence in phase determining relationships ap- 
peared in Chapter 5 of Monograph I (1953). In this 
chapter the nature of the subsets of H and the averages 
of the corresponding IEh[ 9 were employed to infer the 
structural basis of the rational dependence. From this 
inference a type of renormalization of structure factors 
(equation (5.07), Monograph I) was carried out and 
employed in the phase determining relations (e.g. 
equation (5-13), Monograph I). 

In this paper the renormalization is carried out 
without first inferring the structural origin of the 
rational dependence. This leads to a general procedure 
for renormalization, independent of the nature of the 
rational dependence, which has the advantage of not 
requiring a knowledge of the rationally dependent sets 
of atoms. I t  is of interest that  the phase determining 

formulas of Monograph I (1953) and of the current 
series (1959) maintain their validity provided that  the 
renormalization has first been carried out. 

In this paper the nature and effect of rational 
dependence will be discussed by means of illustrative 
examples and the general treatment of experimental 
data will be described. I t  is important to consider this 
treatment of the data when the averages <lEhl2>h 
taken over various subsets of H differ significantly 
from unity. Future experience will tell how frequently 
this occurs in structure determination. In view of the 
experimental restrictions on collecting scattering data 
and the tendency of the averages over low order 
reflections to exaggerate the effects of approximate 
rational dependence, the need for renormahzation may 
be quite frequent. 

2. Rational  dependence  m o d u l o  1 

A set of numbers rj, j = 1, . . . ,  v is said to be rationally 
dependent modulo 1 if there exist v integers ms, not 
all zero, such that  

Z, m~r~=u , (2-1) 

where u is an integer and r~ will be identified later 
with xj, y~, or zj. The only type of rational dependence 
which requires special treatment consists of the 
particular cases of (2.1) in which either ~=1 or v=2  
and ml = - m 2 .  Atoms are said to be rationally de- 
pendent if their x or y or z coordinates satisfy (2.1) 
in the restricted sense just described. The simplest 
rationally dependent set, modulo 1, is given by a 
single atom whose coordinates are all rational, in- 
cluding therefore not only the case of an atom in a 
fixed special position, e.g. ½, ½, 0, but also the case 
of an atom having more general rational coordinates, 
e.g. ½, ½, ~. An example of a rationally dependent 
pair is given by two atoms in general positions, having 
as the difference of any of their corresponding coor- 
dinates a rational number, e.g. rl = (x, y, z) and re=  
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(x+½, y',  z'), since we m a y  take m~= - m ~ = 2  in (2-1) 
with  r~ = x and r 2  ---- x + 1 ; or e.g. r~ = (x, y, z) and 
r 2 = ( x + ½ ,  y - ~ ,  z+½). In  the  first of these examples 
<lE~0012) > 1, while <[E=00]2>< 1 (g means even and u 
means odd). In  the case t ha t  r~=(x ,  y, z) and r 2 =  
(x, y', z'), (fEnool2> > 1. 

3. A n a l y s i s  

The effect of rat ional  dependence is i l lustrated here 
for ~ (Monograph I, 1953) of space group P 2 / m  by 
means of examples of increasing complexity,  culminat-  
ing in the most  general case. At  the same t ime the 
process of renormalizat ion will be seen to be contained 
in the results of these calculations. 

The final section 3-6 will be devoted to summarizing 
the na ture  of various phase determining formulas for 
all the  space groups. 

3.1. No rational dependence 

For  space group P 2 / m  the quasi-normalized struc- 
ture  factor d~h(h= (hkl)) (Karle & t t a u p t m a n ,  1959), 
is defined by  

4 ~v/~ 
= ~ 2." Z~ cos 27~(hx~+lz¢) cos 2~rky¢, (3.1.1) 

where ~v/~ 
(1= = 4  2`" Z~; (3.1.2) 

~'=1 

N is the number  of a toms per  cell in non-rat ional  
positions and Z~- is the  atomic number  of the j t h  atom. 
F rom (3.1.1) it follows tha t  

~Y/~ 

<6~[>, = _4 2." Z~(1 +cos  47~(hxi+lzi)) (3.1.3) 
(12 ] = 1  

- 1 + a~l~" 4 2v/4 
. . . .  22Z2cos47~(hx~+lz~). (3"1"4) 

(12 (1112 ~=1 
Therefore 

, (12 
5~2h02, = (1~/--~ <#]k~-- 1>~ (3.1.5) 

where 6~0e~ is the quasi-normalized s t ructure  factor 
for the squared s tructure,  i.e. the  s t ructure  isomor- 
phous to the given one in which Z~ is replaced by  Z~.. 
I t  should be noted t h a t  (3.1.4) implies ( 5 ~ } ~ = 1 .  

3.2. A n  additional atom at 0, 0, 0 
The quasi-normalized s t ructure  factor is now 

d~ = (1~/---~ Z + 4  .~Y Z~ cos 2~(hx~+lz~) cos 2~ky~ , 
] = 1  

(3.2.1/ where z¢/~ 
(1 ,=Zn+ a * , a*=4.~Y Z~ . (3.2.2) 

F rom (3.2.1) it follows tha t  
1 ~ 2v/a ] 

<g~,)~ ---- -- ~Z2+4 2 '  Z~.(1 +cos  4z(hx~+lz~))[ ,  (3.2-3) 
(12 [ ~=1 

= 1 +  (3.2.4)  
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Therefore 
, (12 

5~2h021 = (1,~/---~ <#~kZ-- 1}k, (3"2"5) 

where * d°2h02~ is the quasi-normalized s t ructure  factor 
for the squared s t ructure  with the a tom at  the origin 
deleted. We note t h a t  (3-2.4) implies <d~}h= 1. 

3-3. Additional atoms at 0, 0, 0 and ½, 0, 0 

The quasi-normalized s t ructure  factor is now 

1 { x/4 
# h  = (1U--22 Z + ( -- 1)hZ' + 4 2`' Zj 

~'=I 

where × cos 27e(hx~ + lzj) cos 27ikyj} 

~'/4 
(1~--Z~+Z'~+ * * =4  22 Z~ (in, (in 

]=1 

From (3.3.1) it  follows tha t  

(3.3.1) 

(3.3.2) 

.~,'/4 
< ~ > k  = _1 ( Z + ( -  1)hZ')2+4 ~Y Z~ 

(12 / = 1  

× (1 +cos  4~(hx j+ l z j ) ) l  
% 

(3.3.3) 
] 

2 )h 
= l + - Z Z ' ( - 1  

0"2 

a .1/2 4 2v/4 
+ ~  22Z~ cos4xe(hx~+lzj) . (3.3.4) 

0"2 0"4 $1/2 j - i -  
Therefore 

. a~. # ~ l  - 1 + --  Z Z '  ( - 1) , (3.3.5) 

where * 6¢2h02z is the  quasi-normalized s t ructure  factor 
for the squared s t ructure  with the a toms at  0, 0, 0 
and ½, 0, 0 deleted. Now we find tha t  (3.3.4) implies 
tha t  

2 
<~>gkz-- 1 + -- Z Z ' ,  (3"3.6) 

(12 

2 2 
<#h>UkZ = 1-- -- Z Z ' ,  (3"3"7) 

G2 
while 

{6¢~,>h= 1 • (3"3.8) 

Equat ions  (3-3.6) and (3-3.7) i l lustrate the characteris- 
tic effect of ra t ional ly  dependent  atoms, namely  the 
deviat ion from un i ty  of averages of ]6°hp over certain 
of the subsets of the indices. In  view of (3.3.6) and 
(3"3.7), (3.3.5) m a y  be wri t ten  

where 

and 
6*2= <g°e>gk~, if h is even, 

d ~ =  <o~2>uk~, if h is odd. 

Equa t ion  (3.3.9) m a y  be rewri t ten 

(3.3.9) 

(3.3.10) 

(3.3.11) 
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(3.3.12) 

and is of the same form as (3.1.5) and (3.2.5) with 
#a~  replaced by the 'renormalized structure factor' 
#a~d(d°3) 1/e. The renormalized structure factor is ob- 
tained from d ~  by dividing d~a~ by the root mean 
square of all the # over the subset to which 5 ~  
belongs, i.e., in this case, over the gkl if h is even and 
over the ukl if h is odd. In equations (3.1.5) and 
(3.2.5), d ~3 is equal to uni ty  when the average is taken 
over any subset defined in terms of the indices alone. 
In  this sense the ~a~ in (3.1.5) and (3.2.5) may  be 
regarded as special cases of renormalization. Although 
(3.3.121 illustrates the origin of the term 'renormaliza- 
tion', it will be convenient in what follows to use the 
equivalent form (3.3.9). 

3.4. Additional atoms at 0, 0, 0; ½, 0, 0 and 0, 0, ½ 
The quasi-normalized structure factor is now 

,{ #~, = a~/---: ~ Z + ( - 1 ) a Z '  + ( - 1 ) z Z  '' 

2Vl4 } 
+ 4 . ~  Z~ cos 2~(hx~+lz~) cos 2~ky~ , 

]=1 
where ~14 

0.n = Z~ + Z'n - , ,~ , + ~  + 0 . ~ ,  0 . n * = 4 2 g ? .  
]=1 

From (3-4" 1) it follows tha t  

(3.4.1) 

(3.4.2) 

+ 

Therefore, 

¢,#~,~)~2 =_{[Z+(_l)~Z,+(_l),Z,,]30.~.l 
2YI4 } 

+ 4 . ~ Z ~ [ l + c o s  4~,(hx~+lz~)] , (3.4-3) 
~=1 

2 2 2 Z 'Z"(  1) h+~ = l + -  Z Z ' ( -  1 ) ~ +  - z z " ( -  1)~+ - - 
0.3 0"3 0"3 

0.4 .1/3 4 "5'/4 
",~,~/2 -~ Z~ cos 4~(hx;+lzl) . (3"4.4) 

0.2 " 4  ~ = 1 

, (73 

where * d°~ho2~ is the quasi-normalized structure factor 
for the squared structure with atoms at  0, 0, O; ½, 0, 0 

and O, 0, ½ deleted. The ~ is the appropriate one of 

(~y3)g~g = I + 2  (ZZ, + ZZ, ,  + Z,Z,,)  , (3.4.6) 
(73 

(g2)~u  = 1 + 2  ( Z Z ' - Z Z " - Z ' Z " ) ,  (3.4-7) 
0.2 

(o~.)u~a = 1 + 2  ( - Z Z '  + Z Z " - Z ' Z " )  , (3.4"8/ 
0.2 

(g3)u~u= 1+  2 ( - Z Z ' - Z Z " + Z ' Z " ) ,  (3.4.9) 
d3 

2 i.e. in (3.4.5) #2=(ez  )a~ if h and 1 are both even, 

#'~=(#~')a~u if h is even and 1 is odd, etc. We note 
again tha t  although the averages in equations (3.4-6)- 
(3.4.9) differ from unity, we still have (#~,)h----1 
where h ranges over all vectors in reciprocal space. 

3-5. General case 
The quasi-normalized structure factor, including 

additional atoms Z~ in rational positions, is 

1 ~v~ 
= z .  cos 

"NIt } 
+ 4 _,~ Z~ cos 2 ~(hx~ + lz~) cos 2~ky~ , (3"5-1) 

where 

0 . , , = ~  2 * 0 . * = 4 ~  " (3-5-2) Zli + 0.n, Zi , 
~=1 i = 1  

and the _hT1 atoms ZI~ constitute a rationally dependent 
set which causes significant deviations from uni ty  in 
the averages of d~ over certain subsets. 

I t  follows from (3.5.11 tha t  

-~V4 
~. 2 4~(hxj+lzj)( l  +cos 4~/cyj) + R ,  @hkz=A,~+4 Z,  Zj cos 

j = l  
(3.5-3) 

where 

= -- Z~j cos 2xe(hx~j+kylj+lzlj +a  , 
(Y2 

(3-5.4) 
and R is a double summation which satisfies 

(R)k=O . (3.5.5) 

Let h =  (h, ]c, l) be equal to the fixed vector h~ = 
(hi,/cl, 11). We average both sides of (3-5.3) over all 
integers k such tha t  Ah~z~=Ah~lh, obtaining 

o-~1/~ 
(~hlkll)k=Ahlklll "~ ~2h102/1 (3"5"6) 

0.3 

where #*h103z1 is the quasi-normalized structure factor 
for the squared structure with the N1 atoms Zlj 
deleted. 

Consider all values of h, k and 1 such tha t  

A~z = Ahl~lq • (3"5"7) 

We now average both sides of (3.5.3) over this set of 
h, k and l, obtaining 

2 (d~hkZ)hk~ -- - A h l , , , - ~ z ~  • (3-5"8) 

Equat ion (3-5.6) may  be rewritten in the form 

5~2h10~1----- (d~lkZ1-- Ah~k~Z~)k, (3"5"9) 
4 

where it is clear from (3.5-8) tha t  Ahlkd~ is an average 
of 6¢~kl over an appropriate set of indices. We replace 
kl in the above argument by k2, k3, . . .  in turn, and 
average over kl, k3, k8 . . . .  , obtaining finally 
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~2hlO21l=(l$41/-----~<~21kz1--Ahlkll>k , (3"5"10/ 

where the average in (3.5.10) is now taken over all/c, 
and for each fixed k~, 

= < #hkl>~, (3-5.1 I) A h~ ~i z~ 2 

where the average in (3.5.111 is over all h, k, and 1 
such tha t  Aa~z=Aa~iz~. Equation (3.5-10) represents 
the general case of renormalization for ~ in space 
group P2/m.  

3"6. Z2, X3, basic and integrated formulas  

The same methods for obtaining the formulas for 
Z1 in P 2 / m  in sections 3.1-3.5 may  be employed to 
obtain similar formulas in the other space groups, 
including non-centrosymmetric space groups having 
centrosymmetric projections. The Sayre (19521 for- 
mula Z2 represented in algebraically exact form by 

#h '  = (~41/----20~2 < # k  ~'~h__k>k (3"6"1) 

is unaffected by rational dependence. Here #;, is the 
quasi-normalized structure factor for the entire 
squared structure. 

On carrying through the derivation of Z8 by alge- 
braic means in space group P1, for example, the result 
is 

a.~/2 <5~k (5~+k)]2 -- #~)}k, (3"6"2) 

where 5 ~** is the quasi-normalized structure factor 
for the cubed structure with the rationally dependent 
atoms deleted. As before, #2 is the average value of 
d ~- over the subset to which 5 ~ C~+k)]~ belongs. 

The basic and integrated formulas for phase deter- 
mination, derived by means of the probabili ty methods 
employing averages over the indices (Hauptman & 
Karle, 1958; Karle & Hauptman,  1958; also the series 
on a unified program for phase determination, 1959 ft.), 
have exact validity if there is no rational dependence. 
In  the case of rational dependence, we have found 
tha t  these formulas require the same type  of re- 
normalization as tha t  already described in sections 
3.1-3.5. For  example in the first of the papers con- 
cerned with a unified program for phase determination 
(Karle & Hauptman,  19591, the types of functions 
which appear in the averages over all indices are 

~tph = I~h] p -  #p ,  (3"6"3) 
and 

A m -  ]#hlt-- 1 Mt (3-6"4) 
log ] g~hl 

where 
#p=<l#klP}k 

and 
(3.6-5) 

Mt =/ / [#k]  t -  1 \ (3"6"6) 

In  order to include the effect of rational dependence 
in these formulas to a first approximation, it is merely 
necessary to reinterpret the averages in (3.6.5) and 
(3.6.6) to mean tha t  they  are taken only over tha t  
subset k to which the corresponding IEhl of (3.6.3) 
and (3.6.4) belongs. I t  should be noted tha t  this is 
the only change introduced into the phase determining 
formulas, e.g. (3-1.1), (3.1.2), (3.2.1) and (3.2.2) of our 
paper (19591, since the # '  in these formulas still refer 
to the quasi-normalized structure factors for the entire 
squared structure. 

4. P r o c e d u r e  

I t  is assumed tha t  in accordance with well-known 
procedures a list of the magnitudes of the normalized 
structure factors is available. In  searching for subsets 
for which ]E[ ~" differs significantly from uni ty  it  is 
convenient to have a listing in decreasing order of [El2. 
Each subset must  be describable by means of one 
or more congruences of the following form 

ah + bk + cl - n (rood m) ,  (4.1) 

where a, b, c and the prime factors of m are small 

integers (ordinarily < 11). Whether  a set of means lEVI 
is to be considered a significant one requiring re- 
normalization depends upon the magnitudes of the 
deviations from unity,  the number of contributors, 
and the number of means in the set. In  forming this 
evaluation, it is necessary to know tha t  the standard 
deviation of ]Ehl 2 is ~/2 or 1 depending upon whether 
the distribution of [Eh] is centric or acentric. Then the 
respective standard deviations of the means are 
(2/n) 1/2 or (1/n) 1/2, where n is the number of contribu- 
tors to the corresponding mean. Once significant 
subsets have been obtained, the averages, I#[ p or 
(l#l t -  1)/log [5~], over these subsets, ra ther  than over 
all reciprocal space, are employed in the phase deter- 
mining formulas. 

Table 1. Averages over subsets for  the mineral  spurrite, 
space group P21/a, showing the need for  renormalization 

Subsets <~2> (]#l 3-11 log [d~[ n V(2/n) 

g 0 l, h+l  --- 0 (rood 3) 3-344 8.955 42 0"22 
g 0 l, h+l  ~ 0 (rood 3) 1.365 3.743 85 0.15 
g g l, h+l  ---- 0 (rood 3) 2.462 6.557 81 0.16 
g g l, h-t-I ~ 0 (rood 3) 1.216 3.373 160 0.I1 
u u l ,  h + / ~ 0 ( m o d 3 )  1.531 4.173 97 0.14 
u ul ,  h+l  ~ 0 (rood 3) 0.758 2.222 192 0.10 

h ~ k (mod 2) 0.580 1.725 633 0.06 
All data 1.017 2.859 1290 0.04 

I n  this  space g roup  the  n o r m a l  va lue  for <g'2>gol is 2 while  
t h a t  for <•2>hkl iS I. The  th i rd  c o l u m n  conta ins  averages  
sui table  for use in the  i n t eg ra t ed  formulas .  The  fou r th  c o l u m n  

shows the  n u m b e r  of e l ements  in each subse t  

As an example, Table 1 illustrates our experience 
with the mineral spurrite. Reference to column 5 
indicates tha t  the various averages show significant 
deviations from their expected values. The subsets of 
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Table 1 were obtained by  inspection of the experimen- 
ta l  da ta  previous to the s t ructure  determinat ion.  The 
employment  of the  averages of Table 1 facil i tated 
the  solution of the  problem to be published a t  a future  
date.  I t  is of interest  tha t ,  in this case, the s t ructura l  
origin for the  renormalizat ion depends upon the  
presence of six ra t ional ly  dependent  atoms. Their 
position vectors, r l ,  r~, . . . ,  r6 sat isfy the following 
relations approximate ly  

r ~ - r l  ~ r 4 - r 3  ~ r 6 - r 5  ~ (½-, 0, ½) , (4-2) 

r l - r 8  ~ (0, ½, 0) , (4.3) 
and  

r l - r s  ~ (0, ~, ]:). (4.4) 

More general effects of rat ional  dependence, which 
are included in (2.1) when v = 2 and ml # - m2 or 
v > 2, change only the higher order terms in the  phase 
determining formulas and therefore do not  usual ly 
have a significant effect. 

In  general the average E2h over all vectors in recip- 
rocal space is uni ty,  even for the  case of ra t ional ly  
dependent  atoms. However,  when atomic coordinates 
overlap in projection, E 2 > 1 in t h a t  projection. Wi th  
the finite number  of da t a  available from exper iment  
this m a y  cause a deviat ion from un i ty  of the over-all 
average.  

5. Conc lud ing  r e m a r k s  

As m a y  be seen from the foregoing sections the t rea t -  
ment  of the problem of ra t ional  dependence does not  
require a previous knowledge of structure.  The re- 
normalizat ion procedure is based merely upon in- 
spection of the  averages of subsets. This process 
should be readily amenable  to p rogramming  on 
au tomat ic  computing facilities.* 

* Since this paper was written, a program for renormaliza- 
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The Crystal Structure of Iron(II) Chloride Tetrahydrate 

BY BRUCE R. PENFOLD* AND J. A. GRIGOR 

Chemistry Department, University of Canterbury, Christchurch, New Zealand 
and School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U. S. A. 

(Received 15 May 1959) 

The crystal structure of iron(II) chloride tetrahydrate  has been determined by means of electron- 
density projections down the three crystallographic axes. Atomic coordinates have been refined by 
three-dimensional least-squares t reatment  of the diffraction data  of the three equatorial zones. 
The crystals are monoclinic, space group P21/c with a=5.91,  b=7.17, c=8.44 A, f l= l12  ° 10'. 
The structure consists of discrete Fe(H20)4C12 groups, two per unit cell. They are distorted octahedra 
and it is suggested that  they are held together by O - H . . -  C1 hydrogen bonds. Bond distances 
within a group are Fe-C1, 2.38; Fe-O(1), 2-09; Fe-O(2), 2.59 /~. 

1. In troduct ion  

The available crystal  s t ructura l  da t a  on hydra t ed  
metallic halides are ext remely limited (e.g. see Wells, 
1954). There are only about  ten detailed s t ructure  
determinat ions  reported in the l i terature and of these, 
only three, namely  cobalt(II)  chloride d ihydra te  
(Co(H20)2C12) (Vajn~tejn, 1949), copper(II)  chloride 
d ihydra te  (Cu(H20)2C12) (Harker ,  1936 and Petersen 

* Present address: Department of Chemistry, Harvard 
University, Cambridge 38, Massachusetts, U.S.A. 

& Levy,  1957), and copper(II)  fluoride d ihydra te  
(Cu(H20)2F~) (Geller & Bond, 1958) refer to simple 
salts of t ransi t ion metals.  Of general interest  in such 
crystals are (a) the na ture  of the meta l -ha logen  bonds, 
(b) the stereochemical requirements  of the wate r  
molecule, and (c) the  na ture  of the  hydrogen bonding. 
We propose to under take  a s tudy  of the  crystal  struc- 
tures of a series of hydra t ed  i ron(II)  halides as a con- 
t r ibut ion to the  crystal  chemistry of hydra ted  halides 
generally. The t e t r ahydra tes  of the chloride and fluor- 
ide of i ron(II)  are both readily available and, as such 


